
International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 950
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Similarity Detection improvisation in a Clustered
Inline Deduplication for Secondary Data

Neha Amale, Prof. Jyoti Malhotra

Abstract— Data Deduplication is a storage saving technique which is a key component of enterprise storage environment. Clustered
schemes are introduced in Data Deduplication domain to overcome the performance and capacity limitations of single node solutions.
Often these clustered schemes face main problems of data routing and Disk chunk index lookup bottleneck. Solutions to these problems
are similarity detection and locality. Locality based approaches make use of locality in backup stream to improve cluster deduplication.
Similarity detection techniques make use of similarity features in data to distribute it among deduplication nodes. This approach reduces
RAM usage in individual deduplication nodes. There are many techniques available for similarity detection. In this paper, a clustered inline
deduplication scheme based on Simhash for similarity detection is presented. A routing algorithm based on Simhash to distribute data
among deduplication node is also described. Proposed system can achieve improved similarity detection and higher deduplication
throughput with low system overheads.

Index Terms— Clusters, Data Deduplication, Locality, Simhash.

—————————— ——————————

1 INTRODUCTION
ATA deduplication plays a vital role in enterprise stor-
age environment. Deduplication can save a lot of valua-
ble storage space, which is a major cause of concern in

today’s rapid growth of data storage requirements.
There is a lot of research done in this domain and main focus
is on
• Improving deduplication ratio
• Performing deduplication at higher speed
In this paper, we are concentrating more on clustered schemes
in deduplication. Generally an inline clustered deduplication
scheme consists of following components:
• Client: Client component performs chunking and chunk

fingerprint generation.

• Server Cluster: Server Cluster consists of many dedupli-
cation nodes, each of which performs fingerprint lookup
operation and unique data storage operation in parallel.

There are many proposed deduplication cluster schemes. Each
of which is facing following main problems:
• Data Routing:

 Due to communication overhead among deduplication
nodes, in cluster deduplication system at large scale, dedu-
plication is only performed within individual servers and
cross node redundancy remains untouched. Hence Data Rout-
ing becomes very important issue in scalable cluster dedupli-
cation schemes.
• Disk chunk index lookup problem:

The chunk index of a large dataset, which maps chunk fin-
gerprint to where that chunk is stored on disk in order to iden-
tify the replicated data, is generally too big to fit into The lim-
ited memory of a deduplication server and causes the parallel
deduplication performance of multiple data streams from
backup clients to degrade significantly due to the frequent and
random disk I/Os to look up the chunk index.
There are mainly two solutions for above mentioned prob-
lems.

• Data Similarity:
Similarity based methods uses data similarity to distribute

data among deduplication nodes and reduce RAM usage in
individual nodes. These methods can easily find the node with
highest similarity by extracting similarity features in the back-
up data streams, while they often fail to obtain high dedupli-
cation effectiveness in individual deduplication servers.
• Locality:

Locality based approaches, such as the stateless routing and
stateful routing schemes [5], exploit locality in back- up data
streams to optimize cluster deduplication. These schemes dis-
tribute data across deduplication servers at coarse granularity
to achieve scalable deduplication throughput across the nodes,
while suppress redundant data at fine granularity in individu-
al servers for high duplicate elimination ratio in each node.
However, to achieve high cluster deduplication effectiveness,
it requires very high communication overhead to route similar
data to the same node.

In this paper, proposed system will use concept of Super-

chunk for locality and Simhash [16] in a routing algorithm for
similarity detection phase.

The rest of this paper is organized as follows. Section 2 in-
troduces the related work. Section 3 presents the design and
implementation of proposed system. Section 4 conducts a se-
ries of experiments to compare the efficiency of proposed sys-
tem.

The last section concludes our work.

2 RELATED WORK
All research work done in data deduplication area focuses

on how to achieve better deduplication ratio, that is, remove
the duplicate data as much as possible and how to make effec-
tive use of resources available. Various deduplication cluster-
ing schemes were proposed [3],[5],[6],[7],[8],[9],[10], [11],
[12] to achieve scalability and high performance.

D

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 951
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Zhu et. al. [15] have proposed use of Summary vector and
Locality to reduce disk access but still this solution causes
disk bottleneck issue as data size grows. To avoid chunk
lookup disk bottleneck problem that most inline, chunk-based
deduplication schemes face, a technique called as Sparse In-
dexing [13] is used.

In Ho Min Sung approach [14], authors have proposed a

clustering backup system that exploits file fingerprint mecha-
nism for multi-level Deduplication of redundant data. Their
approach differs from the traditional file server system. And it
works better than Sparse Indexing [13] as Sparse Indexing
depends on sampling rate. The proposed approach [14] ena-
bles the efficient use of the storage capacity and network
bandwidth without the transmission of the duplicate data
block. This approach makes use of simple mod operation to
route each chunk to respective node. Hence it suffers data
fragmentation issue as well as false positive and false negative
issue.

Time and space requirement of deduplication can be fur-

ther reduced by using Guohua Wang’s approach [10].Multiple
nodes are used for performing chunk level Deduplication in
parallel. This improves performance considerably. In-memory
“fingerprint summary” is used that avoids duplicates among
nodes in cluster. This approach also makes use of simple mod
operation to route each chunk to respective node. Hence it
suffers false positive, false negative and fingerprint summary
refreshing issue.

Dirk Meister’s proposes a new dedupv1 system [9] that fur-

ther improves throughput by making use of Solid State Drives
(SSDs).This system achieves a backup speed of 160MB/s with
a single node without depending on locality. System proposed
here has storage and capacity limitation associated with single
node deduplication system.

Kaiser et. al. have proposed an Exact Deduplication cluster
[6] which will be able to detect as much as redundancy as sin-
gle node solution.”Exact Deduplication” means a system
which can detect all duplicate problems. Main aim is to
achieve Exact Deduplication with small chunk size and scala-
bility in one environment. In this system, Available storage is
split into many partitions and each partition contains its own
file system and it is accessed by a single node at a single point
of time. But main disadvantage of this scheme is communica-
tion overhead among server deduplication nodes.

This Communication overhead issue can be resolved using

∑-Dedupe System proposed by Yinjin Fu et. al. [5].∑-Dedupe
System is used to overcome intra node and internodes dedu-
plication overheads by making use of a new routing algorithm
based on similarity indexing. This routing algorithm will al-
ways route similar data to same nodes in clusters which will
have maximum possibility of duplication removal. Similarity
Duplicate detection is done using Jaccard Index.

Chunk-based deduplication is a commonly used deduplica-

tion technology, which divides data objects into fixed or vari-
able length chunks. A hash fingerprint of each chunk is used

to determine whether that chunk has been stored before.
Chunks with the same fingerprint are assumed identical. New
chunks are stored and references are updated for duplicate
chunks. Chunk-based deduplication is very effective for back-
up workloads, which tend to be files that evolve slowly, main-
ly through small changes, additions, and deletions. However,
unless some form of locality or similarity is exploited, chunk-
based deduplication has to face the disk bottleneck problem.
The total size of fingerprints required to detect duplicate
chunks increases with the size of dataset, which may quickly
overflow the RAM capacity and must be paged to disk. More-
over, hash fingerprint values are natively random, so the in-
dex of fingerprint cannot be cached effectively without locali-
ty, and it is not uncommon for nearly every index access to
require a random disk access. This disk bottleneck severely
limits deduplication throughput and increases the system
overheads. To provide high deduplication throughput and
low system overheads, a new deduplication scheme named
Simdedup[2] is proposed for massive data storage environ-
ment, which leverages simhash algorithm to achieve the goal
.In this scheme, a fat client is used to perform majority of
deduplication activities, whereas server performs only storage
activities.

From all above studied paper, we have learned about dif-

ferent scalable clustered schemes for deduplication. We are
focusing on building a new deduplication clustered scheme
based on Yinjin Fu et. al. [5] and further improving its similari-
ty detection phase by making use of Simhash.

3 SYSTEM ARCHITECTURE

3.1 Objective
To implement a Clustered-Dedupe System using Simhash to
improve similarity detection phase.

3.2 Goals and Objective
Main goals of proposed system are as follows:
• To improve deduplication ratio with low system over-

heads.
• To reduce inter node communication overhead.
• To increase similarity detection ratio.

3.3 System Architecture

System [1] consists of following main components:

1. Backup Clients:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 952
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Backup clients perform following tasks:
a. Data Partitioning:

This module performs data chunking with fixed or variable
chunk size and super-chunk grouping. It is observed that var-
iable chunking would be preferred as described by authors
Cai Bo et. al.[4]

b. Chunk fingerprinting:
This module calculates chunk fingerprints by a collision-
resistant MD5 hash function.

c. Data Routing:
This module selects a deduplication node for the routing of
each super-chunk by the data routing scheme.

2. Deduplication Server Cluster:
It performs following main tasks:

a. Similarity index lookup:
This module returns the results of similarity index lookup for
data routing.

b. Chunk index cache management:
This module buffers the recent hot chunk fingerprints in
chunk index cache to speed up the process of identifying du-
plicate chunks.

c. Parallel container management:
This module stores the unique chunks in larger units, called
containers, in parallel. It consists of mainly database opera-
tions.

3.4 Proposed Similarity detection algorithm

• Input: a chunk fingerprint list of a super chunk
S,{fp1,fp2,…,fpn}

• Output: a target node ID,i

1. Calculate Simhash Index SIndex for Super Chunk S and sent
SIndex to candidate node with ID {SIndex mod N} in dedupli-
cation server cluster of N nodes.
2. In deduplication server cluster, obtain the most similar su-
perchunk by comparing the SIndex of the previously stored
super-chunks in the similarity index. The returned value
would be most similar previously stored superchunk on that
node.
3. Choose the deduplication server node with ID i that satisfies
SIndex mod N as the target node. On this node, get all finger-
prints of chunks that belong to most similar Superchunk for
deduplication.

4 EVALUATION AND RESULTS
4.1 Objectives
We have simulated this system using Java Threads. And Fol-
lowing results are taken on incremental backup data. And
results are compared with ∑-Dedupe system simulated in Java
environment.

4.2 Result and Analysis

1. Deduplication ratio
Deduplication ratio = Bytes in / Bytes out

Fig: 2 Deduplication ratio

The fig 2 shows the comparisons of the Deduplication ratio

of existing system using Jaccard Index for Similarity detection
and proposed deduplication system using Simhash for Simi-
larity detection. It can be seen from graph that as Superchunk
size increases, System using Simhash performs better (Dedu-
plication ratio is higher) than System using Jaccard Index.

2. Similarity Detection Accuracy

Fig: 3 Similarity Detection accuracy

The fig 3 shows the comparisons of similarity count ob-

tained for different superchunks in existing system and pro-
posed system. In Proposed system simhash is used for similar-
ity detection and as simhash works on bit level and computes
hash for entire Superchunk, it is much accurate in finding Sim-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 11, November-2014 953
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

ilarity among Superchunks. Whereas existing system uses Jac-
card Index and it tries to find ratio of number of common ele-
ment in Superchunks and Total number of elements in Super-
chunks.

3. Number of Database Comparisons

Fig 4: Number of Database Comparisons

The fig 4 shows the database comparisons obtained for dif-

ferent superchunk using existing and proposed system. As
proposed system, performs deduplication with most similar
Superchunks it required less comparisons whereas existing
system uses most similar cluster node for deduplication , it
requires more comparisons.

5 CONCLUSION
Data deduplication is a storage saving technique which is a
key component of enterprise storage environment. All
Deduplication solutions proposed so far are either focusing on
how to reduce more duplicates or how to improve perfor-
mance of the system.
Proposed clustered inline deduplication for secondary data
performs well in terms of following factors -

 Deduplication ratio is improved by average 79%.
 Scalability- In terms of inter-node communication

overhead.
 Similarity detection - Improved by average 80%.
 Deduplication throughput – In terms of number of

comparisons required for deduplication - 70% less
comparisons are required.

From Result and Analysis done during this phase, it can be
said that Simhash works better than Jaccard Index for Similari-
ty detection phase and hence is used in the proposed system.

REFERENCES
[1] Neha Chetan Amale, Jyoti Malhotra, “A Clustered Inline Deduplica
tion for Secondary Data”, Cyber Times International Journal of Technolo-
gy & Management (CTIJTM), Vol. 7, Issue 1, April-2014.
[2] Wenbin Yao, Pengdi Ye, “Simdedup: A New Deduplication Scheme
Based on Simhash”, WAIM 2013 Workshops, LNCS 7901, pp. 79–88,
2013
[3] Chao Chen , Jonathan Bastnagel , Yong Chen ,“Data Deduplication in a
Hybrid Architecture for Improving Write Performance”, ROSS '13 Pro-
ceedings of the 3rd International Workshop on Runtime and Operating
Systems for Supercomputers, 2013

[4] Cai Bo, Zhang Feng Li, Wang Can ,“Research on Chunking Algorithms
of Data De-duplication”, Proceedings of the 2012 International Conference
on Communication, Electronics and Automation Engineering,pp.1019-
1025,2012
[5] Yinjin Fu, Hong Jiang, and Nong Xiao,” A Scalable Inline Cluster
Deduplication Framework for Big Data Protection”, IFIP International
Federation for Information Processing 2012, pp. 354–373, 2012
[6] Kaiser, H., Meister, D., Brinkmann, A., Effert, S. “Design of an Exact
Data Deduplication Cluster.”, Proc. of IEEE MSST, pp.1-12, 2012
[7] Dong, W., Douglis, F., Li, K., Patterson, H., Reddy, S., Shilane,
P.,“Tradeoffs in Scalable Data Routing for Deduplication Clusters.”, Proc.
of USENIX FAST, 2011
[8] Jaehong Min, Daeyoung Yoon, and Youjip Won,” Efficient Deduplica-
tion Techniques for Modern Backup Operation”, IEEE Transactions On
Computers, Vol. 60, No. 6, pp.824-840,2011
[9] D. Meister and A. Brinkmann, “dedupv1: Improving deduplication
throughput using solid state drives,” in Proceedings of the 26th IEEE Con-
ference on Mass Storage Systems and Technologies (MSST), 2010.
[10] Guohua Wang and Yuelong Zhao, Xiaoling Xie, and Lin Liu.,” Re-
search on a clustering data de-duplication mechanism based on Bloom
Filter”, Multimedia Technology (ICMT), 2010 International Conference,
2010.
[11] Dubnicki, C., Gryz, L., Heldt, L., Kaczmarczyk, M., Kilian, W.,
Strzelczak, P., Szczepkowski, J., Ungureanu, C., Welnicki,
M.,”HYDRAstor: a Scalable Secondary Storage.”, Proc. of USENIX FAST,
2009.
[12] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme bin-
ning: Scalable, parallel deduplication for chunk-based file backup,” in
Proceedings of the 17th IEEE International Symposium on Modeling,
Analysis, and Simulation (MASCOTS), 2009.
 [13] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
andP. Camble, “Sparse indexing: Large scale, inline deduplication using-
sampling and locality,” in Proceedings of the 7th USENIX Conferenceon
File and Storage Technologies (FAST), 2009.
[14] Ho Min Sung, Wan yeon Lee, Jin Kim, and Young WoongKo, “Design
and implementation of clustering file backup server using file finger-
print,” Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing, September 2008, pp. 61-73.
[15] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the
Data Domain deduplication file system,” in Proceedings of the
6thUSENIX Conference on File and Storage Technologies (FAST), 2008.
[16] Caitlin Sadowski, Greg Levin,” SimHash: Hash-based Similarity De-
tection”, 2007.

IJSER

http://www.ijser.org/

	1 Introduction
	2 RELATED WORK
	3 SYSTEM ARCHITECTURE
	3.1 Objective
	3.2 Goals and Objective
	3.3 System Architecture
	3.4 Proposed Similarity detection algorithm

	4 Evaluation and results
	4.1 Objectives
	4.2 Result and Analysis

	5 Conclusion
	References

